3.781 \(\int \frac{1}{(c x)^{2/3} (a+b x^2)^{2/3}} \, dx\)

Optimal. Leaf size=364 \[ \frac{3^{3/4} \sqrt [3]{c x} \sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right ) \sqrt{\frac{\frac{b^{2/3} (c x)^{4/3}}{\left (a+b x^2\right )^{2/3}}+\frac{\sqrt [3]{b} c^{2/3} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}+c^{4/3}}{\left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{c^{2/3}-\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}}{c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{2 a c^{5/3} \sqrt{-\frac{\sqrt [3]{b} (c x)^{2/3} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )}{\sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}}} \]

[Out]

(3^(3/4)*(c*x)^(1/3)*(a + b*x^2)^(1/3)*(c^(2/3) - (b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))*Sqrt[(c^(4/3) + (b^
(2/3)*(c*x)^(4/3))/(a + b*x^2)^(2/3) + (b^(1/3)*c^(2/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))/(c^(2/3) - ((1 + Sqrt[
3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))^2]*EllipticF[ArcCos[(c^(2/3) - ((1 - Sqrt[3])*b^(1/3)*(c*x)^(2/3))
/(a + b*x^2)^(1/3))/(c^(2/3) - ((1 + Sqrt[3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))], (2 + Sqrt[3])/4])/(2*a
*c^(5/3)*Sqrt[-((b^(1/3)*(c*x)^(2/3)*(c^(2/3) - (b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3)))/((a + b*x^2)^(1/3)*(
c^(2/3) - ((1 + Sqrt[3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.591276, antiderivative size = 364, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {329, 241, 225} \[ \frac{3^{3/4} \sqrt [3]{c x} \sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right ) \sqrt{\frac{\frac{b^{2/3} (c x)^{4/3}}{\left (a+b x^2\right )^{2/3}}+\frac{\sqrt [3]{b} c^{2/3} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}+c^{4/3}}{\left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}} F\left (\cos ^{-1}\left (\frac{c^{2/3}-\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{b x^2+a}}}{c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{b x^2+a}}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{2 a c^{5/3} \sqrt{-\frac{\sqrt [3]{b} (c x)^{2/3} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )}{\sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(2/3)*(a + b*x^2)^(2/3)),x]

[Out]

(3^(3/4)*(c*x)^(1/3)*(a + b*x^2)^(1/3)*(c^(2/3) - (b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))*Sqrt[(c^(4/3) + (b^
(2/3)*(c*x)^(4/3))/(a + b*x^2)^(2/3) + (b^(1/3)*c^(2/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))/(c^(2/3) - ((1 + Sqrt[
3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))^2]*EllipticF[ArcCos[(c^(2/3) - ((1 - Sqrt[3])*b^(1/3)*(c*x)^(2/3))
/(a + b*x^2)^(1/3))/(c^(2/3) - ((1 + Sqrt[3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))], (2 + Sqrt[3])/4])/(2*a
*c^(5/3)*Sqrt[-((b^(1/3)*(c*x)^(2/3)*(c^(2/3) - (b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3)))/((a + b*x^2)^(1/3)*(
c^(2/3) - ((1 + Sqrt[3])*b^(1/3)*(c*x)^(2/3))/(a + b*x^2)^(1/3))^2))])

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 241

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a/(a + b*x^n))^(p + 1/n)*(a + b*x^n)^(p + 1/n), Subst[In
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p,
 0] && NeQ[p, -2^(-1)] && LtQ[Denominator[p + 1/n], Denominator[p]]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{(c x)^{2/3} \left (a+b x^2\right )^{2/3}} \, dx &=\frac{3 \operatorname{Subst}\left (\int \frac{1}{\left (a+\frac{b x^6}{c^2}\right )^{2/3}} \, dx,x,\sqrt [3]{c x}\right )}{c}\\ &=\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{b x^6}{c^2}}} \, dx,x,\frac{\sqrt [3]{c x}}{\sqrt [6]{a+b x^2}}\right )}{c \sqrt{\frac{a}{a+b x^2}} \sqrt{a+b x^2}}\\ &=\frac{3^{3/4} \sqrt [3]{c x} \sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right ) \sqrt{\frac{c^{4/3}+\frac{b^{2/3} (c x)^{4/3}}{\left (a+b x^2\right )^{2/3}}+\frac{\sqrt [3]{b} c^{2/3} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}}{\left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}} F\left (\cos ^{-1}\left (\frac{c^{2/3}-\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}}{c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{2 a c^{5/3} \sqrt{-\frac{\sqrt [3]{b} (c x)^{2/3} \left (c^{2/3}-\frac{\sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )}{\sqrt [3]{a+b x^2} \left (c^{2/3}-\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b} (c x)^{2/3}}{\sqrt [3]{a+b x^2}}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0140878, size = 54, normalized size = 0.15 \[ \frac{3 x \left (\frac{b x^2}{a}+1\right )^{2/3} \, _2F_1\left (\frac{1}{6},\frac{2}{3};\frac{7}{6};-\frac{b x^2}{a}\right )}{(c x)^{2/3} \left (a+b x^2\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(2/3)*(a + b*x^2)^(2/3)),x]

[Out]

(3*x*(1 + (b*x^2)/a)^(2/3)*Hypergeometric2F1[1/6, 2/3, 7/6, -((b*x^2)/a)])/((c*x)^(2/3)*(a + b*x^2)^(2/3))

________________________________________________________________________________________

Maple [F]  time = 0.025, size = 0, normalized size = 0. \begin{align*} \int{ \left ( cx \right ) ^{-{\frac{2}{3}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(2/3)/(b*x^2+a)^(2/3),x)

[Out]

int(1/(c*x)^(2/3)/(b*x^2+a)^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{2}{3}} \left (c x\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(2/3)/(b*x^2+a)^(2/3),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(2/3)*(c*x)^(2/3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{1}{3}} \left (c x\right )^{\frac{1}{3}}}{b c x^{3} + a c x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(2/3)/(b*x^2+a)^(2/3),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(1/3)*(c*x)^(1/3)/(b*c*x^3 + a*c*x), x)

________________________________________________________________________________________

Sympy [C]  time = 2.27123, size = 31, normalized size = 0.09 \begin{align*} - \frac{{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{3}{2} \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{b^{\frac{2}{3}} c^{\frac{2}{3}} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(2/3)/(b*x**2+a)**(2/3),x)

[Out]

-hyper((1/2, 2/3), (3/2,), a*exp_polar(I*pi)/(b*x**2))/(b**(2/3)*c**(2/3)*x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{2}{3}} \left (c x\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(2/3)/(b*x^2+a)^(2/3),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(2/3)*(c*x)^(2/3)), x)